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Abstract— Battery remaining capacity estimation is a critical 

indicator in battery management systems. Accurate estimation of 
battery remaining capacity, i.e., State of Health (SoH), can guide 
the timely recycling and cascade utilization of LiFePO4 batteries, 
contributing to economic savings and environmental protection. 
This paper proposes a Support Vector Regression (SVR) model 
using the Radial Basis Kernel Function (RBF) to estimate battery 
SoH. Sample data is rapidly obtained from aged batteries through 
the Hybrid Pulse Power Characterization (HPPC) test, and 
features are constructed using the minimum, maximum, and 
average values of the hysteresis curve. Hyperparameters of the 
RBF-SVR model are determined through literature review and 
empirical analysis. To validate the proposed method, the RBF-
SVR model is trained and tested using LiFePO4 battery samples 
with varying degrees of aging, demonstrating the method's 
accuracy and effectiveness. 

 
Index Terms— Lithium-ion battery, Support Vector Machine, 

State of Health estimation. 

1. Introduction 
With the rapid development of renewable energy and electric 

vehicle technologies, batteries, as the core components for 
energy storage and conversion, significantly influence the 
overall efficiency and reliability of the system. The State of 
Health (SOH) of a battery is a critical indicator measuring the 
difference between the current performance and the 
performance of a new battery, directly affecting its lifespan, 
safety, and economic viability. Therefore, accurate estimation 
of battery SOH is of paramount importance for optimizing 
Battery Management Systems (BMS), extending battery life, 
enhancing energy utilization efficiency, and reducing 
maintenance costs. 

A. Research Background and Significance 
Estimating battery SOH is a complex and challenging 

problem influenced by various factors, including the number of 
charge-discharge cycles, depth of discharge, temperature, and 
self-discharge rate. Traditional SOH estimation methods 
primarily rely on capacity and internal resistance tests, which 
are straightforward but have limitations in practical 
applications, such as long testing times, complex operations, 
and difficulty in real-time monitoring. In recent years, with the  

 
rapid development of data-driven methods and machine 
learning technologies, model-based and data-driven SOH 
estimation methods have become research hotspots. These 
methods can more accurately estimate battery SOH by 
establishing battery aging models or training prediction models 
using historical data, providing real-time health monitoring. 
Accurate SOH estimation has multiple research implications: 
1) Optimizing Battery Management Systems: Real-time 

monitoring of battery SOH enables BMS to more 
effectively control charge-discharge, thermal management, 
fault diagnosis, and maintenance decisions, thereby 
improving battery efficiency and safety. 

2) Extending Battery Life: Accurate SOH estimation helps 
identify battery aging trends, allowing timely adjustments 
to usage strategies to avoid overcharging, over-
discharging, and high temperatures, thereby extending 
battery life. 

3) Improving Energy Utilization Efficiency: Optimizing 
battery usage and management can enhance energy storage 
and conversion efficiency, reduce energy waste, and 
promote the widespread application of renewable energy. 

4) Reducing Maintenance Costs: Accurate SOH estimation 
can help predict the remaining lifespan of batteries, 
enabling rational maintenance and replacement planning, 
reducing maintenance costs and downtime. In summary, 
battery SOH estimation is an important research topic in 
the field of battery management, with broad application 
prospects and profound research significance. This study 
aims to explore and develop data-driven SOH estimation 
methods, achieving accurate, real-time, and reliable 
estimation of battery health status by combining machine 
learning techniques and battery aging samples, providing 
theoretical support and practical guidance for the 
optimization and application of battery management 
systems. 

B. Literature Review 
With the rapid development of electric vehicles, accurate 

estimation of the health status of lithium-ion batteries, as the 
core power source, is crucial for ensuring the safe and efficient 
operation of battery systems [1]. Currently, SOH estimation 
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methods are mainly divided into direct measurement methods 
and indirect analysis methods [2]. Direct measurement methods 
include capacity measurement, internal resistance 
measurement, and impedance measurement. Although these 
methods are highly accurate, they are primarily suitable for 
laboratory environments and difficult to implement in practical 
applications [3]. Indirect analysis methods mainly include 
model-based methods and data-driven methods. Model-based 
methods require high-fidelity battery models to describe the 
nonlinear characteristics of batteries, such as Equivalent Circuit 
Models (ECM), Electrochemical Models (EM), and empirical 
models [4]. 

In recent years, with the development of big data and 
artificial intelligence technologies, data-driven methods based 
on machine learning have gained widespread attention in the 
field of SOH estimation [5]. These methods treat the battery as 
a black box, requiring no detailed knowledge of battery 
characteristics, and mainly include shallow neural networks, 
deep learning, Support Vector Machines (SVM), and Gaussian 
Process Regression (GPR) algorithms [6]. Shallow neural 
networks, including BP neural networks, RBF neural networks, 
and extreme learning machines, have the characteristics of 
simple structure and high computational efficiency [7]. Deep 
learning algorithms such as DNN, RNN, and CNN can 
automatically extract features and perform well in processing 
large-scale data [8]. SVM transforms nonlinear problems into 
linear problems through kernel functions, with good 
generalization ability [9]. GPR, based on probabilistic statistical 
theory, can provide uncertainty estimation for predictions [10]. 

Currently, machine learning in battery SOH estimation still 
faces the following challenges: (1) data quality issues, including 
data collection, cleaning, and labeling; (2) model structure 
selection and hyperparameter tuning; (3) practical deployment 
and computational efficiency of algorithms. Future research 
directions can focus on developing hybrid algorithms to 
improve estimation accuracy, enhancing the generalization 
ability of algorithms, and reducing computational complexity. 

2. Problem Description 
The capacity degradation of LiB mainly comes from three 

aspects: loss of active material in the negative electrode, loss of 
active material in the positive electrode, and loss of lithium 
inventory. This includes aging mechanisms such as the 
formation of the Solid Electrolyte Interface (SEI) and lithium 
plating, where recyclable lithium is consumed by side reactions. 

As an indicator of battery degradation, there is no unified 
definition of battery SoH to date. Several concepts represent 
SoH, such as battery capacity, internal resistance, and cycle 
count. The capacity ratio is commonly used to define SoH, as 
shown in the following equation. 
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where iSoH  is the SoH value after the i  cycle, iC is the 

battery capacity after the i -th cycle, and 0C  is the initial 

battery capacity. 

3. Modeling Method 

A. Feature Construction 
Due to battery aging, the voltage response varies with the 

degree of aging, which is similar to the battery hysteresis 
phenomenon. Therefore, features are constructed using the 
voltage response under the HPPC test, which includes both 
charging and discharging. The results of the experimental test 
are shown in Figure 1. Figure 1(a) shows the current pulse, 
Figure 1(b) shows the voltage response, and Figure 1(c) shows 
the features constructed from the hysteresis curve. In the HPPC 
test of the battery, the hybrid pulse current discharges at a 
current rate of 0.06C(A) and charges at a current rate of 
0.06C(A), followed by discharging and charging at current rates 
of 0.12C(A) and 0.18C(A), respectively. In Figure 1(a), the 
duration of the current pulse is 10s, the relaxation time is 30s, 
and the amplitudes are 0.06C(A), 0.12C(A), and 0.18C(A), 
respectively. Additionally, there is a relaxation time after each 
pulse charge and discharge. Through the HPPC battery pulse 
test, the battery response voltage shown in Figure 1(b) can be 
obtained. Then, the hysteresis curve shown in Figure 1(c) is 
obtained from the difference between the charging and 
discharging response voltages. Therefore, the battery hysteresis 
curve can be obtained by subtracting the charging and 
discharging curves of the same rate. Finally, features (F1i, F2i, 
F3i, i = 1, 2, 3) are constructed using the minimum, maximum, 
and average values of the hysteresis curve. 
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Fig. 1.  The battery voltage response of current pulse test 

B. RBF-SVR Model for Battery SoH Estimation 
The classifier Support Vector Machine (SVM) was 

developed by Vapnik and his colleagues [11] and is currently 
widely used for classification and regression tasks. Compared 
to other machine learning algorithms, SVM has demonstrated 
superior performance in handling small sample sizes, nonlinear, 
and high-dimensional datasets. The theoretical foundation of 
SVM is based on the VC dimension theory and the principle of 
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minimizing structural risk, which consists of empirical risk and 
confidence intervals. The training samples are represented as: 

 

1 1{( , ), , ( , ), ( , )}i i n nx y x y x y          (2) 
 
where ix X∈  is the feature variable, iy R∈ is the true 

label value, and 1, 2, ,i n=   is the number of samples. There 
exists an optimal hyperplane to separate the training dataset: 

 
( ) 0w x bϕ⋅ + =               (3) 

 
where ( )xϕ  is the mapping function that can improve model 

performance, w  is the weight vector, and b  is the bias term. 
For the RBF-SVR regression model, the hyperplane can be 

transformed into the following optimization problem: 
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where ξ  is slack variables introduced to measure the 
estimation error of the RBF-SVR model, and C is the penalty 
factor used to balance the model flatness and empirical risk. By 
solving the above constrained problem, the regression model 
can be written in the following form: 
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where ( , )iK x x  is defined as: 

( , ) ( ) ( )i iK x x x xϕ ϕ= ⋅                  (6) 
 

Thus, the structure of the RBF-SVR model for battery SoH 
prediction is illustrated in Figure 2. 

4. Experiments and Analysis 

A. Experiment Introduction 
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Fig. 2.  Schematic diagram of RBF-SVM model for SoH estimation 

 
The battery test platform is shown in Figure 3. The test 

platform consists of LiFePO4 batteries, a self-developed battery 
tester, and a computer. The cycle life of the LiFePO4 batteries 

used in the test ranges from 1000 to 2500 cycles. 
 

 
Fig. 3.  The experiment setup of test platform 

 
First, the test batteries are rapidly aged using the CC-CV 

charging/discharging method, with a charging and discharging 
current of 0.18C (42.12A), and the number of battery cycles is 
set to 10, 30, 50, 100, and 150, respectively. Therefore, by using 
a large charging and discharging rate, the battery aging can be 
accelerated, and batteries with different degrees of aging can be 
obtained after multiple cycles. Second, after the battery aging 
test, battery sample data is collected using the HPPC test 
method. The test battery is first discharged at a current of 0.06C 
(14.04A), then charged at a current of 0.06C (A), followed by 
discharging and charging tests at currents of 0.12C (28.08A) 
and 0.18C (A), respectively. The duration of the pulse charge 
and discharge is 10s, and a 30s relaxation time is set after each 
pulse charge and discharge. To accurately verify the model, the 
number of battery cycles and Depth of Discharge (DoD) are 
selected as influencing factors of the battery test. After the 
battery aging test, the HPPC test is used to collect battery 
sample data at DoDs of 5%, 10%, 15%, 20%, and 25%, 
respectively. The sampling time is set to 1 second, and a total 
of 12 batteries are tested, collecting 60 data samples for model 
training and 60 data samples for model validation. 

B. Model Training 
The experiment is conducted on a Windows 10 + PyCharm 

tool platform. The sequence of data samples fed into the RBF-
SVR model is modified based on a random function. To prevent 
the different dimensions of the original data from affecting the 
model training process, data preprocessing must be performed. 
Data normalization is applied to eliminate this influence and 
improve the convergence speed during model training. The 
minimum-maximum normalization scales the feature data to a 
range between 0 and 1 according to the equation: 

 
' ( min ) / (max min )x x xx x= − −           (7) 

 
where x  is the original data, 'x is the normalized data, and 

max x  and min x are the maximum and minimum values of the 
data, respectively. 

Adaptability evaluation plays a crucial role, and the 
generality of the SVR is selected as the evolution criterion. The 
performance of the SVR is evaluated using cross-validation 
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Mean Squared Error (MSE). Specifically, the cross-validation 
MSE is defined as: 
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where iSoH  is the measured value, *

iSoH is the estimated 
value, and n  is the number of samples. 

To select an appropriate kernel, the SVR model is configured 
with linear, polynomial, and RBF kernels and evaluated using 
5-fold cross-validation. Table 1 shows the cross-validation 
results, which display the best RBF-SVR parameters and cross-
validation errors for the three models. The model configured 
with a linear kernel produces the largest cross-validation error, 
indicating the worst evaluation performance on the validation 
set. The model configured with a polynomial kernel produces a 
cross-validation error of 6.33%, slightly higher than the cross-
validation error of the model with an RBF kernel. This indicates 
that among the three models, the SVR model configured with 
an RBF kernel has the best generalization performance. 
However, due to the introduction of the Gaussian function, the 
structure of the RBF model is more complex compared to other 
models. Therefore, a trade-off between model complexity and 
generalization performance is made, and the polynomial kernel 
may be the best choice for the implementation of the RBF-SVR 
model on embedded devices. 

 
Table 1 

Cross-validation results 
Kernel Function Parameter Settings Validation Error 
Linear Kernel gamma=200 11.91% 
Polynomial Kernel gamma=200, d=6, p=2 6.33% 
Radial Basis Function gamma=200, sig2=1.2 0.49.5% 

C. Model Performance Metrics 
Five statistical parameters, namely R2, RMSE, MAE, 

MAPE, and SoH Estimation Error, are used as performance 
indicators to verify the comprehensive performance of the SVR 
estimation model. R2 represents the explanatory power of the 
input variables on the output variables. RMSE represents the 
sample standard deviation of the difference between the 
estimated and actual values. MAE, MAPE, and Error are used 
to determine the error range of the SoH estimation results. An 
R2 of 1 is an ideal model, and the closer the values of RMSE, 
MAE, and Error are to 0, the better the model performance. 
Each performance indicator is defined as follows: 
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Where kSoH  is the actual measured value, *

kSoH  is the 

model estimated value, sohM  is the mean value of SoH, and n  
is the number of test samples. 

D. Model Validation 
To demonstrate the comprehensive performance of the 

estimation model and the rationality of the kernel function 
selection, the RBF-SVR model was trained using the training 
set and then validated using three test sets. The measured 
battery SoH was taken as the actual SoH and normalized to a 
range of 0% to 100%. As shown in Table 2, the statistical test 
results indicate that the estimation results on Test Set 3 were the 
worst, with RMSE, MAE, MAPE, and R2 values of 0.5279%, 
0.3499%, 0.4199%, and 99.94%, respectively. The estimation 
results obtained on Test Set 2 were better, with RMSE, MAE, 
MAPE, and R2 values of 0.3834%, 0.2822%, 0.3766%, and 
99.95%, respectively, exceeding the estimation accuracy from 
Test Set 3. The estimation results on Test Set 1 were slightly 
better than those from Test Sets 2 and 3, with RMSE, MAE, 
MAPE, and R2 values of 0.3875%, 0.2546%, 0.3233%, and 
99.95%, respectively. Table 2 Statistical results of SoH 
estimation input variables and battery SoH through the 
Gaussian function. 

 
Table 2 

Statistical results of SoH estimation 
Data RMSE MAE MAPE R2 (%) Error (%) 
Test 1 0.3875 0.2546 0.3233 99.95 [-0.82 1.34] 
Test 2 0.3834 0.2822 0.3766 99.95 [-0.82 1.09] 
Test 3 0.5279 0.3499 0.4199 99.94 [-1.61 0.99] 
aver 0.4329 0.2956 0.3733 99.95 [-1.61 1.34] 

 
As shown in Table 2, the best test results obtained from the 

RBF-SVR model were on Test Set 1. In this case, the R2 metric 
was the best among all tests, indicating that the battery SoH 
estimation curve showed the best fit. In contrast, the worst test 
results were obtained from Test Set 3. Although the results of 
the three tests were different, the overall performance indicators 
were still ideal, especially the total error range of battery SoH 
estimation was between [-1.61% 1.34%]. Therefore, the above 
test results are sufficient to show that the RBF-SVR model can 
overcome the nonlinear relationship between  

E. Impact of Kernel Function on the Model 
To illustrate the rationality of the kernel function selection, 
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two additional SVR models with linear and polynomial kernel 
functions were trained using the training set and then tested 
using the three test sets, taking their average values. The SoH 
estimation results for each model are shown below. 

 
Table 3 

Statistical results of SoH estimation 
Kernel  RMSE MAE MAPE R2 Error 
Linear Kernel 11.77 9.98 14.46 59.27 [-37.91 43.85] 
Polynomial 6.38 4.94 6.95 88.76 [-15.36 24.51] 
  
As shown in Table 3, the statistical test results indicate that 

the SVR model using a linear kernel produced the worst 
average estimation results on the test sets, with RMSE, MAE, 
MAPE, and R2 values of 11.77%, 9.98%, 14.46%, and 59.27%, 
respectively. The SVR model using a polynomial kernel 
produced better estimation results, with RMSE, MAE, MAPE, 
and R2 values of 6.38%, 4.94%, 6.95%, and 88.76%, 
respectively, which clearly exceeded the estimation accuracy of 
the model with a linear kernel. According to Table 2, the 
estimation results of the RBF-SVR model were superior to 
those of the models with polynomial and linear kernels. 
Although the SVR model with a linear kernel did not obtain 
satisfactory estimation results, the other two models achieved 
high-precision battery SoH estimation. In particular, the RBF-
SVR model achieved accurate estimation across the entire test 
set, indicating that the trained model has good robustness and 
generality. 

5. Conclusion 
In this study, we focused on model design and feature 

construction to establish a battery SoH estimation method based 
on machine learning models. On one hand, the RBF-SVR was 
chosen to build the battery SoH estimation model because the 
SVR model is widely used to solve classification and regression 
problems and has superior performance on small, nonlinear, 
and high-dimensional datasets. On the other hand, the response 
voltage measured using the HPPC method was used for feature 
construction, which is a simple, effective, and convenient non-
destructive, non-invasive method for short-term feature 
acquisition in engineering applications. Based on this study, the 
following conclusions can be drawn: This paper proposes a new 
method for estimating the SoH of power batteries, which 
requires only a few short-term feature samples and can 

effectively perform on-site rapid measurements without relying 
on ECM, complex mathematical calculations, or time-
consuming parameter adjustments. Finally, through model 
validation, the superior comprehensive performance of the 
proposed method is demonstrated. 
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